0%

冒泡排序、插入排序、选择排序

原地排序

原地排序算法,就是指空间复杂度是O(1)的排序算法。

稳定性

如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变那这个算法就是稳定的排序算法,反之就是不稳定的排序算法。

冒泡排序

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

最好情况下时间复杂度:O(n)

最坏情况下时间复杂度:O(n²)

平均时间复杂度:O(n²)

算法代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// 冒泡排序,a表示数组,n表示数组大小
public void bubbleSort(int[] a, int n) {
if (n <= 1) return;

for (int i = 0; i < n; ++i) {
// 提前退出冒泡循环的标志位
boolean flag = false;
for (int j = 0; j < n - i - 1; ++j) {
if (a[j] > a[j+1]) { // 交换
int tmp = a[j];
a[j] = a[j+1];
a[j+1] = tmp;
flag = true; // 表示有数据交换
}
}
if (!flag) break; // 没有数据交换,提前退出
}
}

插入排序

插入排序的思路是,首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。

最好情况下时间复杂度:O(n)

最坏情况下时间复杂度:O(n²)

平均时间复杂度:O(n²)

算法代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// 插入排序,a表示数组,n表示数组大小
public void insertionSort(int[] a, int n) {
if (n <= 1) return;

for (int i = 1; i < n; ++i) {
int value = a[i];
int j = i - 1;
// 查找插入的位置
for (; j >= 0; --j) {
if (a[j] > value) {
a[j+1] = a[j]; // 数据移动
} else {
break;
}
}
a[j+1] = value; // 插入数据
}
}

选择排序

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为 O(n2)。

选择排序是一种不稳定的排序算法。

算法代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

public int[] selectionSort(int[] sourceArray) throws Exception {
int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

// 总共要经过 N-1 轮比较
for (int i = 0; i < arr.length - 1; i++) {
int min = i;
// 每轮需要比较的次数 N-i
for (int j = i + 1; j < arr.length; j++) {
if (arr[j] < arr[min]) {
// 记录目前能找到的最小值元素的下标
min = j;
}
}

// 将找到的最小值和i位置所在的值进行交换
if (i != min) {
int tmp = arr[i];
arr[i] = arr[min];
arr[min] = tmp;
}

}
return arr;
}